Recent Advances on Penalized Regression Models for Biological Data
نویسندگان
چکیده
Increasingly amounts of biological data promote the development various penalized regression models. This review discusses recent advances in both linear and logistic models with penalization terms. is mainly focused on models, some corresponding optimization algorithms, their applications data. The pros cons different terms response prediction, sample classification, network construction feature selection are also reviewed. performances a real-world RNA-seq dataset for breast cancer explored. Finally, future directions discussed.
منابع مشابه
a new approach to credibility premium for zero-inflated poisson models for panel data
هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...
15 صفحه اولPenalized Regression Models with Autoregressive Error Terms
Penalized regression methods have recently gained enormous attention in statistics and the field of machine learning due to their ability of reducing the prediction error and identifying important variables at the same time. Numerous studies have been conducted for penalized regression, but most of them are limited to the case when the data are independently observed. In this paper, we study a ...
متن کاملRecent advances in biological imaging.
Recent innovations in microscopy and digital image processing have greatly enhanced the power of biological imaging. Basic principles of several new methods in light and electron microscopy will be discussed, and examples presented of their application to cell and molecular biology.
متن کاملIdentifiability in penalized function-on-function regression models
Regression models with functional responses and covariates constitute a powerful and increasingly important model class. However, regression with functional data poses well known and challenging problems of non-identifiability. This non-identifiability can manifest itself in arbitrarily large errors for coefficient surface estimates despite accurate predictions of the responses, thus invalidati...
متن کاملPenalized Function-on-Function Regression
A general framework for smooth regression of a functional response on one or multiple functional predictors is proposed. Using the mixed model representation of penalized regression expands the scope of function-on-function regression to many realistic scenarios. In particular, the approach can accommodate a densely or sparsely sampled functional response as well as multiple functional predicto...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics
سال: 2022
ISSN: ['2227-7390']
DOI: https://doi.org/10.3390/math10193695